Mathématiques - Révisions **JUIN 2024 CORRECTIF**

Chapitre 1 – Puissances de nombres entiers

Question 1

30 -17375 -20010003 -17816 18 68 -4016 -64-31 57

Question 2

-16

64

-33

17

-2

-6

Question 3

$$4^5 = 4^2 \cdot 4^3$$

$$((-6)^3)^8 = (-6)^{24}$$

$$5^2 \cdot 5^1 = 5^3$$

$$5.5^5 = 5^6$$

$$5^3$$
. $2^3 = 10^3$

$$2^3$$
. $5^3 = 10^3$

$$(4.5)^3 = 4^3.5^3$$
 $7^2.(-2)^2 = (-14)^2$

$$7^2$$
. $(-2)^2 = (-14)^2$

$$\left(3^3\right)^9 = \ 3^{27}$$

Question 4

3 ⁹	2 ¹²	(-2)8	4 ³⁶
$(-2)^6$	3 ¹⁶	10 ³	2 ²¹
5 ⁶	(-15) ²	(-3)10	10 ³³
28 ³	5 ¹⁰	(-5) ⁵	10 ³¹
(-10) ⁸	5 ⁷	(-10)8	

2

7

Question 7

1 0,0001

-64 10

-16 4500

Question 8

0,001+100=100,001

 $10^{-1} = 0,1$

Question 9

45200 2300

0,0003112 0,23

Question 10

10⁴ 10⁴

 10^{-6} 10^{-2}

Question 11

 $2,5.10^8$ $2,64.10^{-5}$

 5.10^{-5} $1,37.10^2.10^2 = 1,37.10^4$

 $1,048.10^{11}$ $1,2352.10^{1}.10^{-4} = 1,2352.10^{-3}$

Question 12

0,000000025

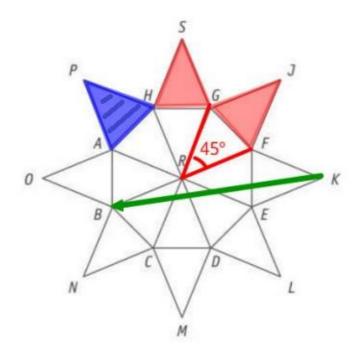
 $2,08.10^{-5}$

12756000

Question 13

 $8,4.10^{12}$

 2.10^{11}

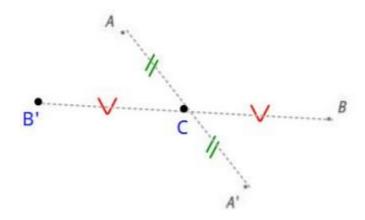

42 années

Chapitre 2 - Les transformations du plan

Question 1

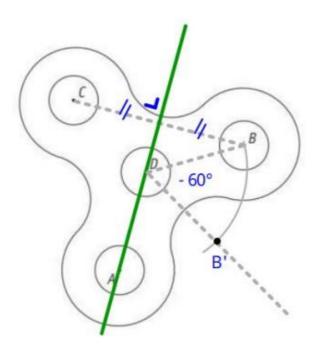
Glisser → translation → vecteur
Retourner → symétrie orthogonale → axe
Tourner de 180° → symétrie centrale → centre
Tourner → rotation → centre, sens et amplitude

Question 2

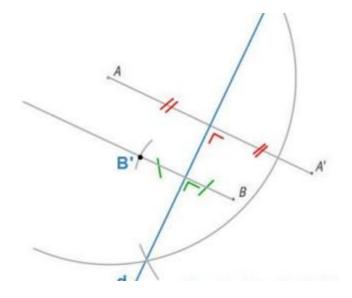


HACHURE l'image du triangle FKE par la symétrie d'axe GC.

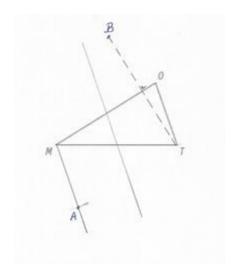
TRACE un vecteur de la translation qui applique le segment [FK] sur le segment [OB].


DÉTERMINE l'amplitude de l'angle de la rotation de centre *R* qui applique le triangle *GJF* sur le triangle *HSG*.

45°



Question 4


- a) Voir ci-dessous
- b) Voir ci-dessous

c) 2 . 360 + 120 = 840°

Question 6

Question 7

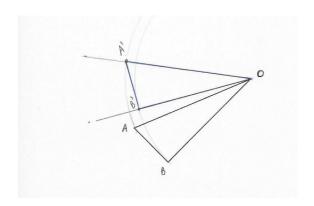
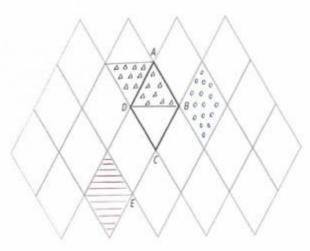
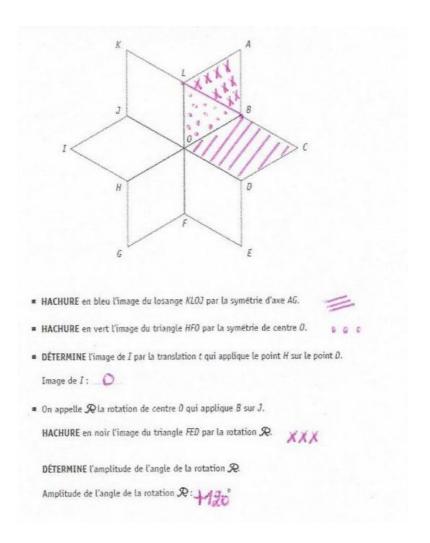



Figure 4

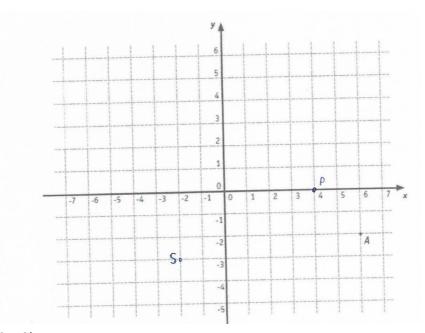
- a) D
- b) [DE]
- c) D
- d) BE
- e) A, O

Question 10

La partie du pavage représentée ci-dessus est constituée de losanges tous identiques au losange ABCD. Le triangle ABCD est équilatéral.


- On appelle t la translation qui applique le point B sur le point E.
 HACHURE en rouge l'image du losange ABCD par la translation t.
- On appelle S la symétrie centrale de centre B.

 HACHURE en bleu l'image du losange ABCD par la symétrie centrale S.
- On appelle R la rotation de centre D qui applique le point B sur le point A.


 HACHURE en vert l'image du losange ABCD par la rotation R.

 L, 444
- DÉTERMINE (sans mesurer) l'amplitude de l'angle de la rotation R.
 Amplitude de la rotation R = 60°
 JUSTIFIE ta réponse.

ear ABD est un briangle équilatival donc 18DA 1= 60°.

Question 12

A(6;-2) A'(-6;2) B'(124;216)

Chapitre 3 - Diviseurs et multiples

Question 1

 $a = d \cdot q + r$ avec r<d

Question 2

<u>Dividende</u>	<u>Diviseur</u>	Quotient	Reste	<u>Égalité</u>
97	11	<u>8</u>	9	<u>97 = 11.8 + 9</u>
83	21	<u>3</u>	20	<u>83 = 21.3 + 20</u>
<u>37</u>	17	2	3	<u>37 = 17.2 + 3</u>

Question 3

109 = 11.9 + 10

A= 109 d=11 q=9 r=10

Question 4

 $a = 5 \cdot 12 + r$ avec r<5 donc r=0, 1, 2, 3, 4

donc a = 60, 61, 62, 63, 64

Question 5

2n

2n + 1 (ou 2n - 1)

5n + 3

n et n + 1

2n et 2n + 2

2n + 1 et 2n + 3 (ou 2n - 1 et 2n + 1)

3n et 3n + 3

Question 6

F contre exemple : si n=1 alors 2n+3=2.1+3=5 et 5 n'est pas pair

V 12n = 6.2n

V 5n+15 = 5.(n+3)

F contre exemple :si n=3 alors 9n+15=9.3+15=42 et 42 n'est pas un multiple de 9

Équation : n + n + 1 = 127	Équation : 5n + 5n + 5 = 155
Les deux nombres sont 63 et 64	Les deux nombres sont 75 et 80
	_
Equation: $n + n + 1 + n + 2 = 126$	Equation : 2n +2n + 2 = 126
Les deux nombres sont 41, 42 et 43.	Les deux nombres sont 62 et 64

Question 8

$$3n + 3n + 3 + 3n + 6 = 9n + 9 = 9$$
. $(n+1)$
 $n + n + 1 + n + 2 + n + 3 = 4n + 6 = 2$. $(2n + 3)$
 $2n + 1 + 2n + 3 = 4n + 4 = 4$. $(n + 1)$

Question 9

Nombres	PGCD	PPCM	Nombres	PGCD	PPCM
12 et 30	6	60	25 et 125	25	125
100 et 150	50	300	15 et 14	1	210
60 et 12	12	60	56 et 96	8	672
8 et 9	1	72	72 et 24	24	72

Question 10

La longueur du côté du carré est de 120 cm. (C'est le PPCM de 24 et 60)

Question 11

Il faut 6 voitures pour transporter les 500 supporters.

Question 12

Il confectionnera 60 ballotins (c'est le PGCD de 360, 420 et 240)

Question 13

Ils sonneront à nouveau ensemble à 11h16 (36 est le PPCM de 4, 6 et 9)

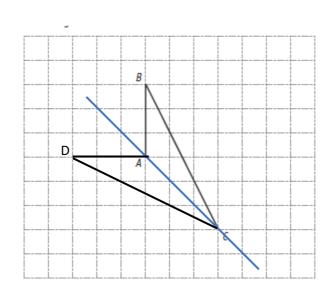
Question 14

302 = 19.15 + 17

Ali recevra 17 billes

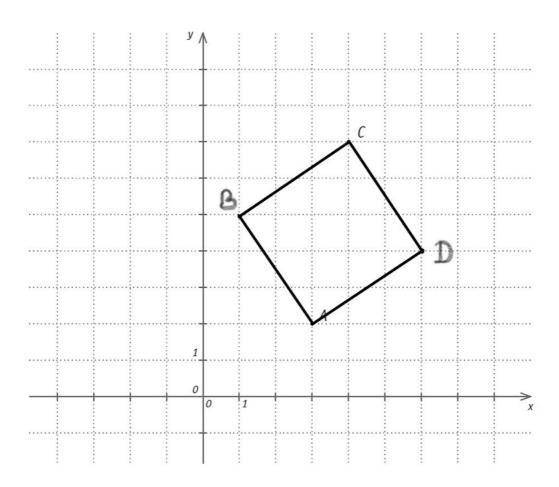
Question 15

La longueur du côté d'une dalle est de 90 cm. (C'est le PGCD de 630 et 540). Il faut 42 dalles.


Chapitre 4 - Axes et centres de symétrie

Question 1

d₁: Vrai	d ₆ : Vrai	d₁₁ : Faux	d ₁₆ : Vrai
d ₂ : Faux	d ₇ : Faux	d ₁₂ : Faux	d ₁₇ : Faux
d₃ : Vrai	d₃ : Faux	d ₁₃ : Vrai	d ₁₈ : Faux
d ₄ : Faux	d ₉ : Faux	d ₁₄ : Vrai	d ₁₉ : Vrai
d ₅ : Vrai	d ₁₀ : Vrai	d ₁₅ : Vrai	d ₂₀ : Faux


Question 2

- a) Faux, aucun triangle ne possède de centre de symétrie.
- b) Vrai
- c) Vrai
- d) Vrai
- e) Faux, il peut également être un losange
- f) Faux, il peut avoir un axe de symétrie s'il est rectangle isocèle
- g) Vrai
- h) Vrai
- i) Vrai
- j) Faux, par exemple, le trapèze ne possède pas de centre de symétrie

a) Ordonnée de C : 7

b)

c) Coordonnée de B : (1;5) ou (6;4) si vous avez inversé les lettres.

Chapitre 5 - Fractions première approche

Question 1

$$8 < \frac{17}{2} < 9$$

$$8 \prec \frac{17}{2} \prec 9$$
 $-3 \prec -\frac{7}{3} \prec -2$ $-6 \prec -5, 4 \prec -5$

$$-6 < -5, 4 < -5$$

$$3 < \frac{17}{5} < 4$$

$$-4 \prec \frac{-35}{9} \prec -3$$

$$3 < \frac{17}{5} < 4$$
 $-4 < \frac{-35}{9} < -3$ $513 < 5{,}132.10^2 < 514$

Question 2

Question 3

$$\frac{4}{7} = \frac{-12}{-21}$$

$$\frac{4}{7} = \frac{-12}{-21}$$
 $\frac{-8}{-20} = \frac{12}{30}$ $\frac{16}{24} = \frac{-12}{-18}$ $\frac{-10}{25} = \frac{-4}{10}$

$$\frac{16}{24} = \frac{-12}{-18}$$

$$\frac{-10}{25} = \frac{-4}{10}$$

Question 4

$$x = -9$$
 $x = 0$

$$x = 0$$

$$x = -24$$
 $x = -15$

$$x = -15$$

$$x = 11$$

$$x = 4$$

$$x = \frac{1}{2}$$

Question 5

$$a = -7$$

Question 6

$$-\frac{-30}{45} = \frac{2}{3}$$

$$\frac{121}{-55} = \frac{-11}{5}$$

$$\frac{-36}{-54} = \frac{2}{3}$$

$$\frac{121}{-55} = \frac{-11}{5}$$
 $\frac{-36}{-54} = \frac{2}{3}$ $-\frac{-45}{-60} = \frac{-3}{4}$

Question 7

$$\frac{8}{7} \! \prec \! \frac{11}{7}$$

$$\frac{-3}{4} < \frac{12}{16}$$

$$\frac{-3}{4} \prec \frac{-3}{7}$$

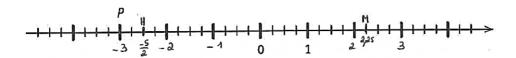
$$\frac{-16}{5} < \frac{-18}{7}$$

$$\frac{-8}{9} > \frac{-9}{8}$$

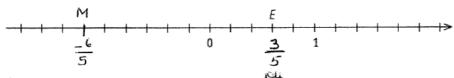
$$\frac{-7}{9} < \frac{-11}{18}$$

$$\frac{2}{5}$$
 \prec 0,75

$$-3 > -\frac{7}{2}$$


$$0.08 < \frac{-4}{-5}$$

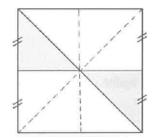
ÉCRIS l'abscisse du point P.


Abscisse de P: ___3__

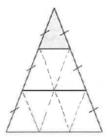
SITUE le point *H* d'abscisse $\frac{-5}{2}$.

SITUE le point M d'abscisse 2,25 .

Question 10


ÉCRIS l'abscisse de E.

PLACE le point M dont l'abscisse vaut $-\frac{6}{5}$.


Question 11

$$\overline{-3 \prec \frac{-1}{4} \prec \frac{1}{5}} \prec 0.7$$

Question 12

Fraction du carré : $\frac{2}{8} = \frac{1}{4}$

Fraction du triangle : $\left(\frac{4}{9}\right)$

Luc:
$$\frac{90}{120} = \frac{3}{4} = \frac{15}{20}$$

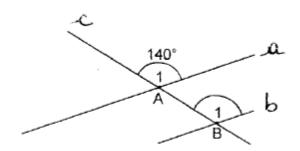
Nikos:
$$\frac{64}{80} = \frac{4}{5} = \frac{16}{20}$$

$$\frac{15}{20} \prec \frac{16}{20}$$

Chapitre 6 - Les angles

Question 1

- a) angles opposés par le sommet
- b) angles alternes internes
- c) angles complémentaires (adjacents)
- d) angles alternes externes
- e) angles supplémentaires (adjacents)
- f) angles supplémentaires (adjacents)


- g) angles correspondants
- h) angles complémentaires (adjacents)
- i) angles opposés par le sommet
- j) angles alternes externes
- k) angles alternes internes

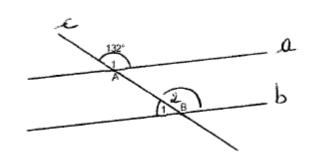
Question 2

a) \hat{A}_1 et \hat{B}_1 sont deux angles correspondants (formés par les // a et b coupées par la # c)

$$\Rightarrow \left| \hat{A}_1 \right| = \left| \hat{B}_1 \right|$$

$$or \left| \hat{A}_1 \right| = 140^\circ \Longrightarrow \left| \hat{B}_1 \right| = 140^\circ$$

b) \hat{X}_1 et \hat{X}_2 sont deux angles supplémentaires adjacents


$$\Rightarrow \left| \hat{X}_1 \right| + \left| \hat{X}_2 \right| = 180^{\circ}$$

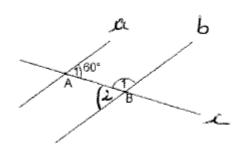
or
$$|\hat{X}_1| = 35^\circ \Rightarrow |\hat{X}_2| = 180^\circ - 35^\circ = 145^\circ$$

c) \hat{A}_1 et \hat{B}_2 sont deux angles correspondants (formés par les // a et b coupées par la # c)

$$\Rightarrow \left| \hat{A}_1 \right| = \left| \hat{B}_2 \right|$$

$$or \left| \hat{A}_1 \right| = 132^\circ \Rightarrow \left| \hat{B}_2 \right| = 132^\circ$$

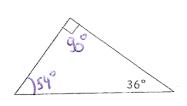
 $\hat{B}_{_{1}}\text{et }\hat{B}_{_{2}}\text{sont deux angles supplémentaires adjacents}$

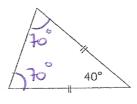

$$\Rightarrow \left| \hat{B}_1 \right| + \left| \hat{B}_2 \right| = 180^{\circ}$$

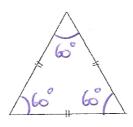
$$or\left|\hat{B}_{2}\right| = 132^{\circ} \Rightarrow \left|\hat{B}_{1}\right| = 180^{\circ} - 132^{\circ} = 48^{\circ}$$

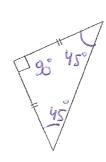
d) \hat{A}_1 et \hat{B}_2 sont deux angles alternes internes (formés par les // a et b coupées par la # c)

$$\Rightarrow \left| \hat{A}_1 \right| = \left| \hat{B}_2 \right|$$


$$or \left| \hat{A}_1 \right| = 60^\circ \Rightarrow \left| \hat{B}_2 \right| = 60^\circ$$




 $\hat{B}_{\scriptscriptstyle 1}$ et $\,\hat{B}_{\scriptscriptstyle 2}$ sont deux angles supplémentaires adjacents


$$\Rightarrow \left| \hat{B}_1 \right| + \left| \hat{B}_2 \right| = 180^{\circ}$$

$$or\left|\hat{B}_{2}\right| = 60^{\circ} \Rightarrow \left|\hat{B}_{1}\right| = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

 $\frac{\text{Question}}{3}$

Question 4

a) x+x+10+x-10=180

3x = 180

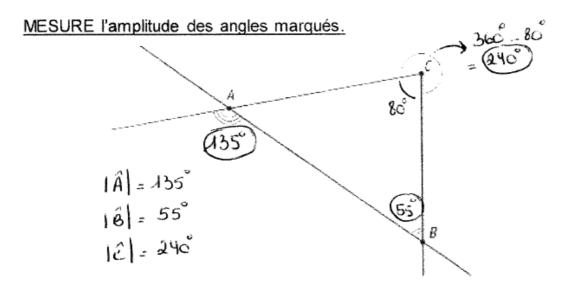
x=60

Les angles mesurent 60°, 70° et 50°.

b) 90+x+x-10=180

$$2x = 100$$

Les angles mesurent 90°, 50° et 40°

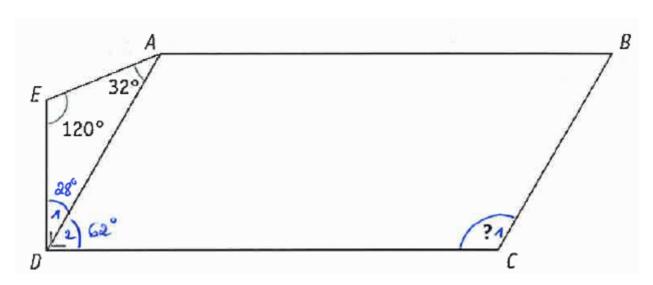

c) 4x-30+x+x=180

$$6x-30 = 180$$

$$6x = 210$$

$$x = 35$$

Les angles mesurent 110°, 35° et 35°.


Question 6

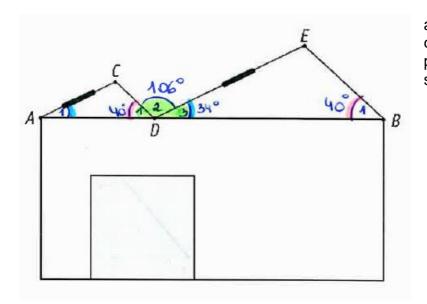
 $\left|\hat{CBD}\right| = 48^{\circ}$ car les angles à la base d'un triangle isocèle ont la même amplitude.

 $|\hat{DCB}| = 84^{\circ}$ car la somme des amplitudes des angles d'un triangle vaut 180°.

ABCD n'est pas un parallélogramme car les angles opposés n'ont pas la même amplitude.

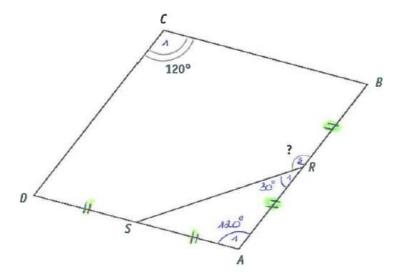
Question 7

$$|\hat{D}_1| = 180^\circ - 120^\circ - 32^\circ = 28^\circ \text{ car}$$


• la somme des amplitudes des angles d'un triangle vaut 180°.

 \hat{D}_1 et \hat{D}_2 sont 2 angles complémentaires adjacents $\Rightarrow \left|\hat{D}_1\right| + \left|\hat{D}_2\right| = 90^\circ$ or $\left|\hat{D}_1\right| = 28^\circ \Rightarrow \left|\hat{D}_2\right| = 90^\circ - 28^\circ = 62^\circ$

$$|\hat{C}_1| = 180^{\circ} - 62^{\circ} = 118^{\circ} \text{ car}$$


Deux

sont Question 8

angles consécutifs d'un parallélogramme supplémentaires.

- \hat{B}_1 et \hat{D}_1 sont deux angles correspondants (formés par les // CD et EB coupées par la # AB) $\Rightarrow \left|\hat{B}_1\right| = \left|\hat{D}_1\right|$ or $\left|\hat{B}_1\right| = 40^\circ \Rightarrow \left|\hat{D}_1\right| = 40^\circ$
- \hat{D}_1 , \hat{D}_2 et \hat{D}_3 sont trois angles supplémentaires adjacents $\Rightarrow \left|\hat{D}_1\right| + \left|\hat{D}_2\right| + \left|\hat{D}_3\right| = 180^\circ$ or $\left|\hat{D}_1\right| = 40^\circ et \left|\hat{D}_2\right| = 106^\circ \Rightarrow \left|\hat{D}_3\right| = 180^\circ 40^\circ 106^\circ = 34^\circ$
- \hat{D}_3 et \hat{A}_1 sont deux angles correspondants (formés par les // DE et AC coupées par la # AB) $\Rightarrow \left|\hat{D}_3\right| = \left|\hat{A}_1\right|$ or $\left|\hat{D}_3\right| = 34^\circ \Rightarrow \left|\hat{A}_1\right| = 34^\circ$
- $|\hat{D}_3| = 34^\circ \text{ et } |\hat{A}_1| = 34^\circ \text{ donc on peut installer des panneaux solaires.}$

 $\left|\hat{A}_1\right| = \left|\hat{C}_1\right| = 120^\circ$ car les angles opposés d'un losange ont la même amplitude. $\left|\hat{R}_1\right| = (180^\circ - 120^\circ) : 2 = 60^\circ : 2 = 30^\circ$ car

- La somme des amplitudes des angles d'un triangle vaut 180°.
- Les angles à la base d'un triangle isocèle ont la même amplitude.

 \hat{R}_1 et \hat{R}_2 sont 2 angles supplémentaires adjacents $\Rightarrow \left|\hat{R}_1\right| + \left|\hat{R}_2\right| = 180^\circ$ or $\left|\hat{R}_1\right| = 30^\circ \Rightarrow \left|\hat{R}_2\right| = 180^\circ - 30^\circ = 150^\circ$

Chapitre 7 : Opérations sur les fractions

Question 1

$$\frac{-3}{14} - \frac{5}{21} = \frac{-19}{42}$$

$$\frac{5}{-8} \cdot \frac{-12}{35} = \frac{3}{14}$$

$$\frac{-8}{9}$$
: $\frac{6}{5} = \frac{-20}{27}$

$$\left(\frac{-3}{4}\right)^2 = \frac{9}{16}$$

$$\frac{9}{\frac{2}{3}} = \frac{27}{2}$$

$$\frac{-4}{-5} + \frac{-7}{25} = \frac{13}{25}$$
$$-1 \quad -4 \quad -3$$

$$\frac{-1}{-26} : \frac{-4}{39} = \frac{-3}{8}$$

$$\frac{-8}{9} : \frac{6}{5} = \frac{-20}{27} \qquad \left(-\frac{2}{3}\right)^3 = \frac{-8}{27}$$

$$\left(\frac{-3}{4}\right)^2 = \frac{9}{16}$$
 $\frac{-13}{-5} \cdot \frac{-10}{52} \cdot 5 = \frac{-5}{2}$

$$\frac{\frac{-5}{8}}{\frac{11}{12}} = \frac{-15}{22}$$

$$\frac{3}{-14} - 3 = \frac{-45}{14}$$

$$\left(-\frac{-5}{3}\right)^3 = \frac{125}{27}$$

$$\frac{12}{-49}.\frac{-35}{15} = \frac{4}{7}$$

$$\frac{22}{5}$$
: $\frac{-33}{35}$ = $\frac{-14}{3}$

$$\left(\frac{-7}{10}\right)^2 = \frac{49}{100}$$

Question 2

$$\frac{3}{5} \cdot \frac{1}{2} - \frac{7}{3} = \frac{-61}{30}$$

$$\left(\frac{3}{5} - \frac{-7}{3}\right) \cdot \frac{1}{2} = \frac{22}{15}$$

$$\frac{\frac{1}{2} + \frac{1}{3}}{\frac{3}{5} - \frac{2}{3}} = \frac{-25}{2}$$

$$\frac{2}{15} - \frac{2}{3} : \frac{1}{4} = \frac{-38}{15}$$

$$5.\left(\frac{-4}{3}\right)^2 = \frac{80}{9}$$

$$\frac{2+\frac{1}{5}}{3-\frac{1}{5}} = \frac{11}{14}$$

Question 3

$$\frac{-3}{2}$$

$$\frac{21}{9}$$

Question 4

Un douzième du rectangle est hachuré

$$\frac{11}{12}$$

...sixième...

Il reste 1 - $\frac{2}{3}$ - $\frac{1}{6}$ = $\frac{1}{6}$ de la pizza Margherita.

Il reste 1 - $\frac{1}{2}$ - $\frac{3}{8}$ = $\frac{1}{8}$ de la pizza aux champignons.

$$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$$

Il reste moins d'une demi-pizza.

Question 6

 $\frac{1}{4}$

 $\frac{3}{2}$

Question 7

Nombre de pralines dans le ballotin : 27

Question 8

Offre 1 : 275 €

Offre 2 : 300 €

Offre 3 : 272 €

⇒ L'offre 3 est la moins couteuse.

Chapitre 8 : Calcul littéral

Question 1

$$-2x^{2} - 6x$$

 $-15x^{2} + 6x$
 $x^{2} - 2x$
 $3a - 3ab - 6 + 6b$
 $y - 2 + xy - 2x$

$$3x^{2} - 16x + 5$$

 $-8a^{2} + 16a - 6$
 $a^{2} - 1$
 $X^{2} - 6x + 8$
 $-15x^{2} - 22x - 8$

Question 2

$$2x + (3x - 2) - (5x - 3) = 1$$
$$-(x + 2) + (-x + 3) = -2x + 1$$
$$-x - (2x - 1) - (-2x + 3) = -x - 2$$

Question 3

6b ³
$-6y^2 + 30y$
2a – 3b
9a² - 4
2
y ² -8y+16
12m³
24 + 9t
$-3m^3 + 2m^2$
15a – 5b
-5t – 1
24y ²
5ax – 10a
Jax – 10a

-2b $6y^2 - y^3$ $20x - 15x^2$ $16m^3$ 2t - 10 $2a^2 - 5a - 12$ -11m $24a^4d^3$ 2a - 14 $-3p^2$ -9t - 3 $2b^2 + 11b + 12$ $6x^2 - 19x + 10$

Question 4

$$5a + 5b = 5$$
. (a+b) $15 c + 25 b = 5$. (3c + 5b) $6bc - 9bd = 3b$. (2c - 3d) $5a - 8a = a$. (5-8) $4a^2b + 2a^2 = 2a^2$. (2b + 1) $-6a^2 - 3a^2 = -3a^2$. (2 + 1) $-2ab - 6a = -2a$. (b + 3) $a^2 - 3a^2b = a^2$. (1-3b) $18xy + 6xz = 6x$. (3y + z)

Question 5

-2

-5

- b) 25
- c) 11
- d) 3n-2

- $6a^5$
- 9y⁸
- $\frac{x^3}{2}$

- 17
- 45
- 16
- 4n + 1

Chapitre 10 : Equations

Question 1

$$x = -2$$
 $x = 15$ $x = 5$
 $x = 3$ $x = \frac{14}{15}$ $x = \frac{7}{4}$
 $x = 1$ $x = \frac{14}{15}$ $x = -1$
 $x = 1$ $x = \frac{5}{2}$ $x = \frac{5}{4}$ $x = \frac{1}{2}$
 $x = -12$ $x = \frac{9}{4}$

Question 2

Question 3

L'erreur est à la quatrième ligne. x = 21 + 3 devrait être x = 21 : (-3)

Justification : Dans la troisième ligne de la résolution, le -3 est un facteur « multiplicateur ». Il faut donc, à la quatrième ligne, <u>diviser</u> (et pas additionner) les deux membres de l'égalité par celui-ci.

Question 4

Choix de l'inconnue : x = le nombre d'élèves de la classe de 2A

Mise en équation : x + (x-3) + (x+1) = 67

Résolution de l'équation : 3x -2 = 67

3x = 69

x = 23

Solution: Il y a 23 élèves en 2A, 20 élèves en 2B et 24 élèves en 2C.

Vérification : 23+20+24 = 67 élèves

Question 5

La deuxième case est cochée.

Question 6

$$3.(-1+5) = -1+13$$

3.4 = 12

12 = 12 Nadia a raison car, en remplaçant l'inconnue par -1, l'égalité est vraie.

Chapitre 9 - Les distances + Chapitre 11 - Médiatrice et bissectrice

1. Non car	Oui car 7 < 6+2	Non car 77 ₹ 45 + 31
8 = 4+4		·

2. 2 < YZ < 12	25< AC < 65	44 < TV < 80
--------------------	-----------------	----------------

- $3. \ 250 \leq 110 + 90$
- 4. Dans le triangle FXI, $6 \le 3 + 3$
- 5. 3 < x < 7 donc la plus grande mesure est 6cm

Dans tout triangle, la longueur d'un côté est comprise entre la différence (positive) et la somme des longueurs des deux autres côtés.

6.

$$\Box$$
 $|BE| + |EC| > |BC|$

$$|AB| + |AC| > |BC|$$

$$\Box |AE| + |EC| < |AC|$$

$$|EA| + |AC| > |EC|$$

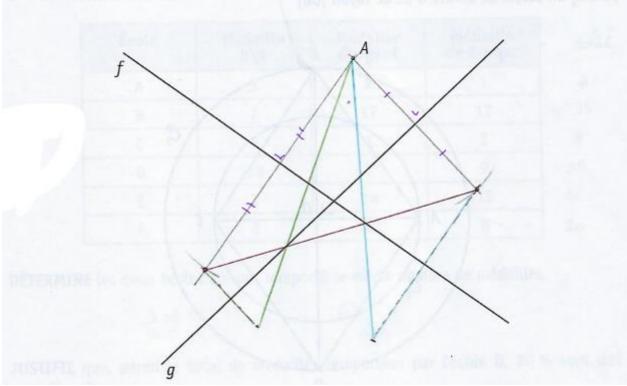
$$\Box |BC| + |AC| < |AB|$$

7. 4,94 ; 7,36 8,14

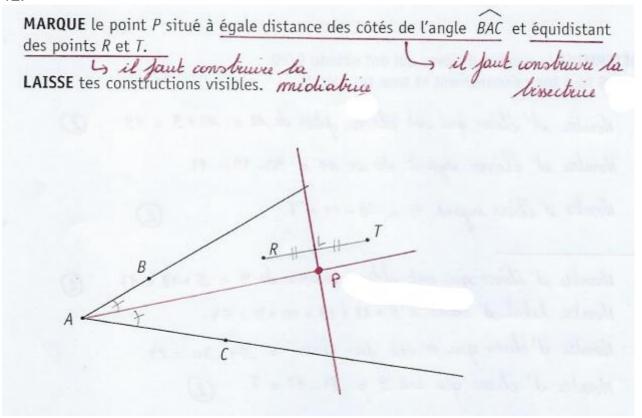
8. Tangent extérieurement 5,5 2

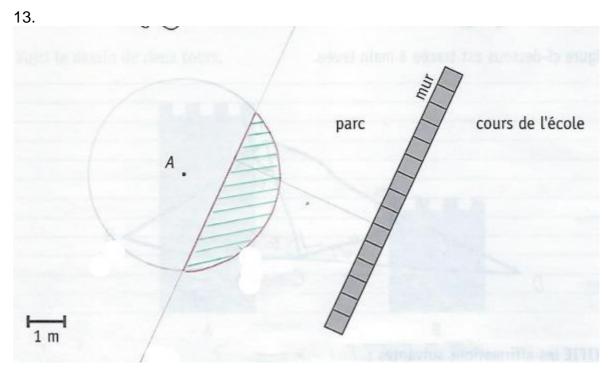
PLACE le point *P* si :

P se trouve à égale distance des côtés [BA] et [BC]; La bissectrice de B

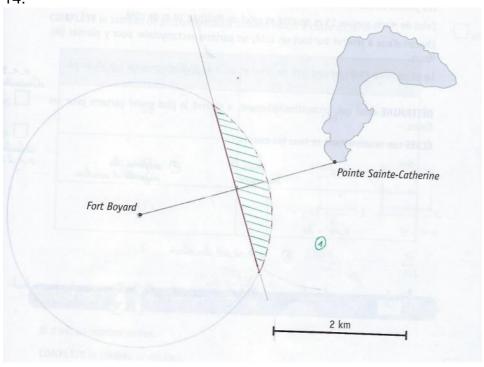

et

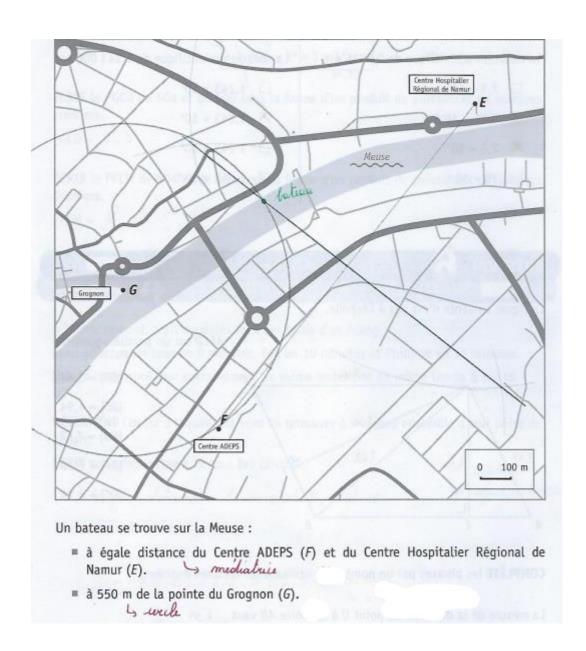
P appartient au côté [AC] du triangle ABC.

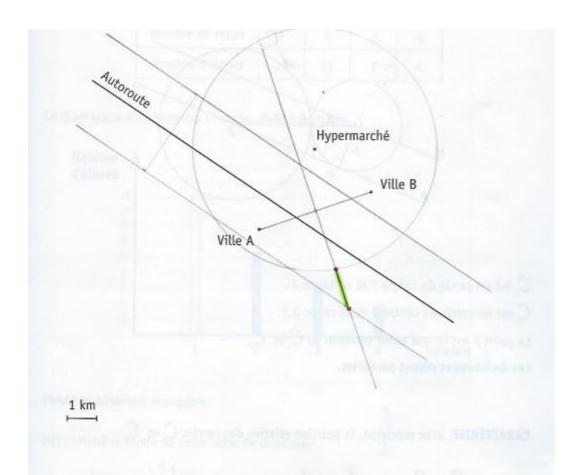

C


10.

CONSTRUIS un triangle dont le point A est un sommet et dont les droites f et g sont deux de ses médiatrices.







14.

15.

On veut construire un centre commercial situé :

- a égale distance des villes A et B ; __ mediatrice [AB]
- à moins de 1,5 km de l'autoroute ; → obc. //
- a plus de 4 km de l'hypermarché. -> welle

Chapitre 12 - Produits remarquables

Question 1

$16a^2 + 24ab + 9b^2$	$9x^4 + 24x^3 + 16x^2$	$9a^4 + 24a^2 + 16$
$4x^2 - 20xy + 25y^2$	$4a^2 - 20a + 25$	$9 + 12x + 4x^2$
$x^2 + 6x + 9$	$16a^2 + 8a + 1$	$x^4 - 4x^3 + 4x^2$
$x^6 + 4x^3 + 4$	$25a^2 - 30a + 9$	$25x^2 + 30x + 9$

Question 2

$9x^2 - 16y^2$	$25x^2 - 16$
$25 - 4x^2$	$1 - 9a^2$
$9x^2 - 1$	$16 - a^2$
$x^2 - 4$	$9a^2 - 1$
$x^6 - 16$	$b^6 - 4b^2$

Question 3

SP	25
DC	$a^2 - 10a + 25$
SP	3-a
DS	-5a + 10
SC	$25 + 10a + a^2$
PP	$25a^2$
DS	5a + 10

Question 4

$$ab + b^2$$

$$a^2 + 2ab + b^2$$

$$a^2 - b^2$$

$$9 - 24x + 16x^2$$
$$4m^2 - 25$$

Chapitre 13 – Proportionnalité et projections parallèles

Question 1

Х	2	5	8	10	1/5	1	14/5
Υ	10	25	40	50	1	5	14

$$K = 5$$
 $y=5.x$

X	15	3	21	12	45	9	36	
Y	10	2	14	8	30	6	24	

K=2/3 $y=2/3 \cdot x$

X	3	9	33	7,5	15	48	3,9
Υ	1	3	11	2,5	5	16	1,3

K=1/3 $y=1/3 \cdot x$

Question 2

x = 9	$x = \frac{2}{5}$	$x = \frac{-10}{7}$
x = -2	x = -9	$x = \frac{21}{2}$

Question 3

- a) Toujours fausse
- b) Toujours vraie
- c) On ne peut conclure

Question 4

Tableau A: k=3

Question 5

812€

Distance	100m	700m	250m	1,5km
horizontale				
Dénivellation	8m	56m	20m	120m

135€

Question 8

126000€

Question 9

Le crayon B mesure 10cm et le crayon C mesure 24cm.

Chapitre 14 - Traitement de données

Question 1

- Faux, l'effectif est de 25
- Faux, c'est 20%
- Faux, le mode est 22
- Vrai
- Vrai

Question 2

Le mode est 35°C et la moyenne est de 36,42°C.

Question 3

- 11
- 9
- 4

Question 4

- 2000
- Tennis
- Oui, le basketball était le 2ème sport et le rugby le 3ème en terme de préférence en 2000 et cela s'est inversé en 2010

Question 5

- 100°
- Loisirs **→** 6000€

Assurance → 5000€

- 9°C
- Mardi
- Mercredi et vendredi
- 18,57°C