
EXERCICES DE SYNTHESE Thème 3 – Approche graphique des fonctions Thème 4 – Fonctions du 1^{er} degré

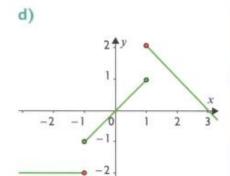
Thème 3 – Approche graphique des fonctions

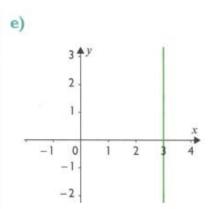
1. Observe chaque graphique et coche la bonne réponse.

Le graphique...

O est une fonction.

-2


O n'est pas une fonction.


Le graphique...

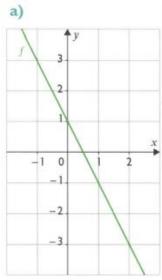

- O est une fonction.
- O n'est pas une fonction.

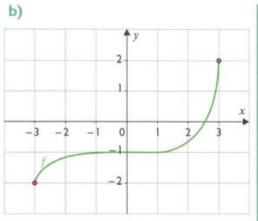
Le graphique...

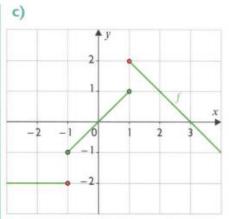
- O est une fonction.
- O n'est pas une fonction.

Le graphique...

- O est une fonction.
- O n'est pas une fonction.

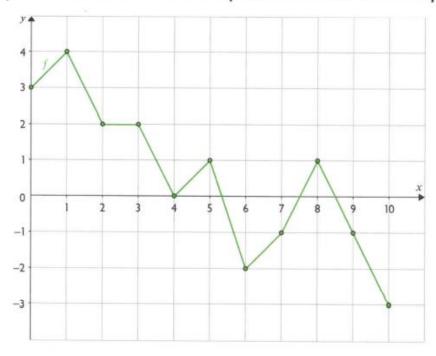

Le graphique...


- O est une fonction.
- O n'est pas une fonction.


Le graphique...

- O est une fonction.
- O n'est pas une fonction.

2. Complète les pointillés relatifs à chaque graphique.

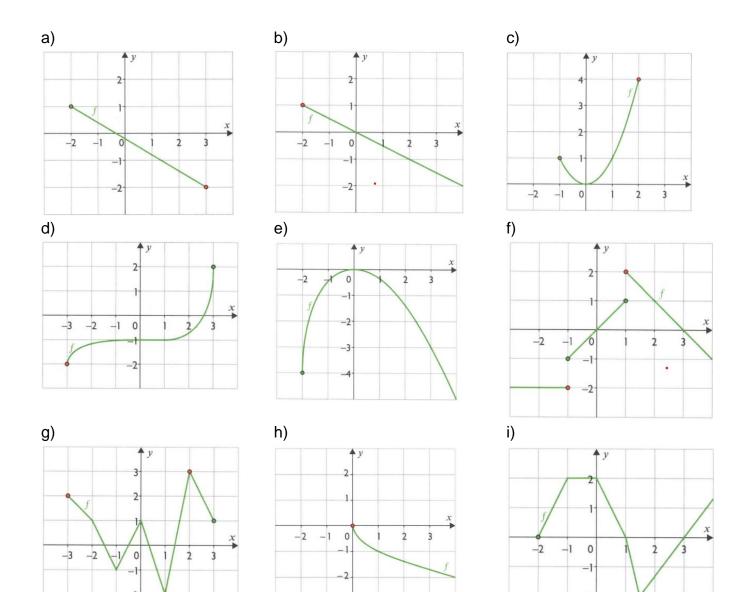

$$f(1) =$$
 $f(0) = 3$
 $f(0) = -3$

$$f(0) =$$
 $f(-3) =$
 $f(-3) =$

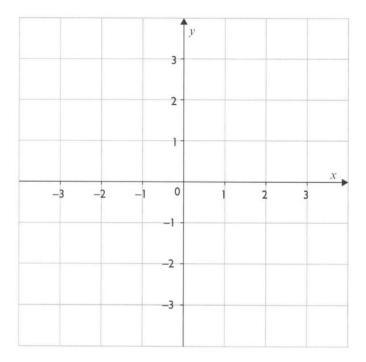
$$f(-1) = 0$$
 $f(-1) = 2$
 $f(2) = 0$

3. Observe le graphique ci-dessous.

Graphique représentant l'évolution de la température à Bruxelles sur une période de 11 jours

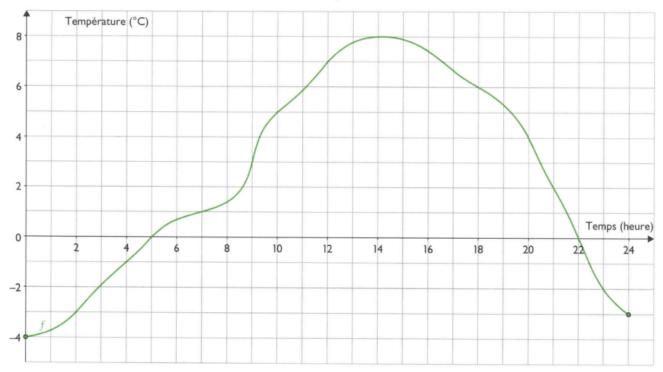


- a) Ce graphique représente-t-il une fonction ? JUSTIFIE ton raisonnement.
- b) CITE la variable dépendante et la variable indépendante de cette situation.
- c) DÉTERMINE les valeurs ci-dessous.
- 1) f(3) =
- 2 L'image de 1 par f est
- d) DÉTERMINE le nombre de jours où la température relevée était positive.
- e) DÉTERMINE le nombre de jours où la température était de 2 °C.


4. Indique si les énoncés sont vrais ou faux.

	Énoncés	Vrai - Faux	
a)	Une fonction peut avoir plusieurs zéros.		
b)	Si le graphique possède au moins une ordonnée à l'origine alors c'est une fonction.		
c)	Une fonction possède au plus une intersection avec l'axe des ordonnées.		
d)	Si l'intersection de la fonction avec l'axe des abscisses est le point de coordonnées (4 ; 0) alors le zéro de la fonction est 4.		

5. Détermine, sur une feuille annexe, le domaine, l'ensemble image, l'éventuelle ordonnée à l'origine, les éventuelles racines, le tableau de signes et le tableau de variation de chaque fonction.



6. Réalise un graphique de fonction dont l'ordonnée à l'origine vaut 2, qui possède un zéro en x = 1 et qui passe par les points (-2; 0) et (-1; -1).

7. Observe le graphique ci-dessous.

Graphique représentant la variation de la température durant une journée d'hiver

- a) DÉTERMINE le domaine de définition de la fonction f.
- b) DÉTERMINE l'ensemble image de la fonction f.
- c) DÉTERMINE le maximum de la fonction f......
- d) DÉTERMINE les minimums de la fonction f.
- e) DRESSE le tableau de signes de la fonction f.

f) DRESSE le tableau de variations de la fonction f.

- g) DÉTERMINE l'intervalle où la température est négative.
- h) DÉTERMINE l'intervalle où la courbe de la température est décroissante.

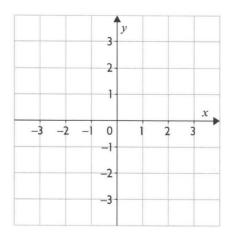
Thème 4 – Fonctions du premier degré

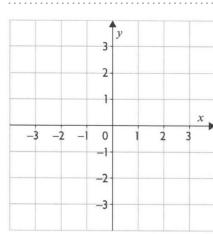
1. Construis le graphique des fonctions suivantes. Explique ton raisonnement.

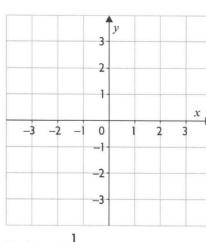
 $\mathbf{a)} \ f(x) = x + 1$

b) f(x) = -3x

c) f(x) = -2


.....


.....

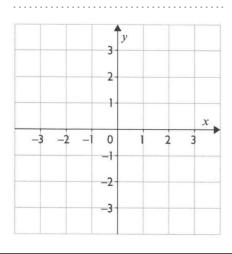

.....

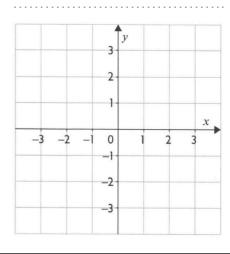
.....

.....

 $\mathbf{d)} \ f(x) = 2x$

f) $f(x) = \frac{1}{2}x$


.....


.....

.....

.....

-3 -2 -1 0 1 2 3
-1
-2
-3
-3

2. Complète le tableau suivant.

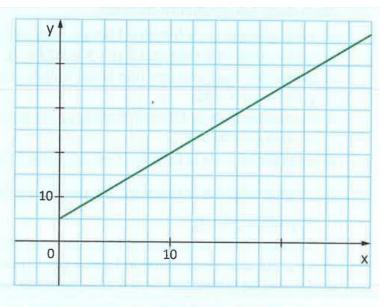
Expression analytique	Type de fonction	Pente du graphique	Croissance de la fonction	Zéro	Ordonnée à l'origine
$f_1: X \to y = -3x + 6$					H H
$f_2: x \rightarrow y = -2$					
$f_3: x \rightarrow y = -x$					The state of the s
$f_4: X \rightarrow = -3 + 5x$		and me			11,7
$f_5: x \rightarrow y = 2x$	(Euris)	T OF T	DIA TOUR		LU 1915
$f_6: x \rightarrow y = 7$			at a second		
$f_7: x \rightarrow y = -3x$			l carle management		
$f_8: x \rightarrow y = 5 + 2x$					
$f_9: x \rightarrow y = \frac{x}{4}$		lanevily a			1
$f_{10}: x \to y = \frac{2}{3}x - 2$	1716 5				WI THE

3. Détermine l'équation des droites suivantes. Justifie ta recherche.

- a) Le graphique de la fonction f coupe l'axe x en (-3; 0) et l'axe y en (0; 5).
- b) La fonction f est telle que f(1) = 3 et f(2) = -1.
- c) La fonction f est une fonction linéaire dont le graphique est parallèle à celui de la fonction $g: x \rightarrow y = 1 3x$.
- d) Le graphique de la fonction f passe par le point A (-1; 4) et il est parallèle à celui de la fonction $g: x \rightarrow y = -2x + 3$.
- e) Le graphique de la fonction f est parallèle à l'axe x et passe par le point A (5 ; -2).
- f) Le graphique de la fonction f est parallèle à celui de la fonction g : $x \rightarrow y = -2 \frac{2}{3}x$ et passe par le point A (-6 ; 2).
- g) L'ordonnée à l'origine de la fonction f est 3 et son graphique passe par le point (-1; -1).
- h) Le graphique de la fonction f passe par le point (-1; 4) et sa pente est nulle.
- i) Le zéro de la fonction f est 4 et la pente de son graphique vaut -2.
- j) La fonction f est linéaire et son graphique est parallèle à celui de la fonction g passant par les points A (3 ; -2 et B (5 ; 2).

4. Détermine les équations des fonctions du premier degré dont le graphique passe par les points A et B.

- a) A(-2; -3) et B(4; 3)
- b) A (2; 4) et B (-3; 2)
- c) A (-2; 4) et B (4; -2)


- d) A (6; 8) et B (3; 4)
- e) A(1;-2) et B(-3;4)
- f) A (1; 4) et B (-2; 0)

5.

Un automobiliste s'arrête dans une station service pour faire le plein.

Le graphique ci-contre représente l'évolution de la quantité d'essence se trouvant dans le réservoir au cours du remplissage en fonction du temps.

- a) Utilise ce graphique pour déterminer une approximation ...
 - de la quantité d'essence se trouvant dans le réservoir après 18 secondes de remplissage.
 - (2) du temps nécessaire pour remplir le réservoir d'une capacité de 45 litres.

b) Détermine la valeur exacte des réponses obtenues au a).

Thème 4 - Inéquations

1. Résous les inéquations suivantes. Note l'ensemble des solutions sous forme d'intervalle.

Série 1

- a) 2x + 4 < 6
- c) -3x + 5 > 2
- e) 5 > 4 2x

b) $4 + 7x \ge -3$

- d) $-4 3x \le -4$
- f) $22x 13 \ge -13$

Série 2

- a) $5x 9 \ge -6x 9$
- c) $x 7 \ge -3x + 2$
- e) $9x \le 2x + 14$

- b) x 7 < 3x + 2
- d) -10x 5 > 12x 1
- f) 3x 4 < 5x + 19

Série 3

- a) $3 \cdot (x + 1) < 4$
- c) $8 (4x + 2) \le 2x + 1$
- e) $-(-x-3) < -4 \cdot (2x+3)$

- b) -4 + (3x 2) > 3
- d) $-10 \cdot (x + 4) \ge 3x 1$
- f) $3 + (-x + 2) \ge -3 \cdot (x + 2)$

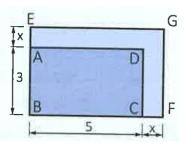
Série 4

- a) $x + \frac{2}{3} < \frac{4}{5}$
- c) $\frac{1}{3} \frac{x+1}{4} \ge x \frac{1}{2}$
- e) $\frac{2x-3}{4} + \frac{x+3}{3} < \frac{1}{12}$

- **b)** $3 \frac{x}{2} > \frac{7x}{2} + 1$
- d) $\frac{-x}{5} + \frac{1}{4} \le -\frac{19x}{20} + 4$
- f) $-\frac{5x}{2} + \frac{1}{4} > \frac{3}{2} \frac{x-2}{4}$

2.

Benoit désire s'inscrire à une plateforme de téléchargement de films en ligne. Après avoir consulté les sites de deux plateformes, il dispose de leur tarif respectif.


Plateforme 1 : l'abonnement coûte 30 € et le téléchargement de chaque film 4 €.

Plateforme 2 : l'abonnement coûte 40 € et le téléchargement de chaque film 3 €.

Aide-le à choisir le meilleur tarif.

3.

Les dimensions du rectangle ABCD sont 3 m et 5 m. Si on augmente chacun de ses côtés de x mètres, on obtient le rectangle EBFG. On note p le périmètre du rectangle ABCD et p' celui du rectangle EBFG. Pour quelles valeurs de x a-t-on p' \geq 2p ?

Thème 4 - Systèmes d'équations

1. Résous les systèmes suivants.

$$\begin{cases} x = -2y + 5 \\ 2x + y = 4 \end{cases}$$

$$\begin{cases} 3y = 5 + x \\ 3y + 5 + x = 0 \end{cases}$$

$$\begin{cases} 2x + y = 1 \\ 2x + 8y = 3 \end{cases}$$

$$\begin{cases} 2x + 3y = 4 \\ x + 2y = 3 \end{cases}$$

$$\begin{cases} 3y + 2x - 1 = 0 \\ 5x + 4y = 3 \end{cases}$$

$$\begin{cases} -2x + 5 = 3y \\ 3x - 2y = 3 \end{cases}$$

$$\begin{cases} -3x + 2y - 7 = 0 \\ -3y + 2x = 2 \end{cases}$$

- 2. Résous les trois problèmes suivants au moyen d'un système de deux équations à deux inconnues.
- a) Lors d'une soirée, Juliette commande six colas et deux limonades pour 15,40 €. Maxime, lui, commande quatre colas et sept limonades pour 19,90 €. DÉTERMINE le prix de chaque boisson.
- b) Un couple a deux enfants. L'ainé a douze ans de plus que le benjamin. Le triple de la somme de leur âge vaut 48. DÉTERMINE l'âge de chacun des enfants.
- c) DÉTERMINE les dimensions d'un terrain rectangulaire, si tu sais que son périmètre vaut 56 m et que la longueur mesure 2 m de plus que la largeur.