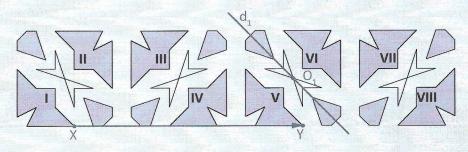
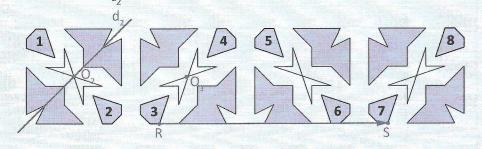
Connaître

1		TR	SO	ROT	SC
le ti	rapèze 3 sur le trapèze 8	X			
le ti	rapèze 6 sur le trapèze 8			X	
le ti	rapèze 5 sur le trapèze 11			X	X
le ti	rapèze 3 sur le trapèze 12	X	are an area of the second		
le t	rapèze 3 sur le trapèze 13		X	X	X

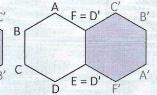
- 2 a) Translation (t_{XY})
- b) Symétrie centrale (S_{O1})
- c) Symétrie centrale (S_{O1}) Symétrie orthogonale (S_{d1})



- d) Symétrie centrale (S_{O_2}) Symétrie orthogonale (S_{d_2})
- e) Translation (t_{RS})
- f) Symétrie centrale (S_{O3})



A = B' C D = C' D'

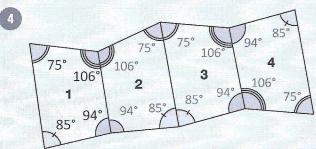


Symétrie orthogonale

Translation

Symétrie centrale

Rotation

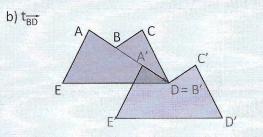


- fig. 1 sur fig. 2 : Symétrie centrale
- fig. 2 sur fig. 3 : Symétrie orthogonale
- fig. 3 sur fig. 4 : Symétrie centrale
- fig. 1 sur fig. 2 : Symétrie orthogonale
- fig. 2 sur fig. 3 : Symétrie centrale
- fig. 3 sur fig. 4 : Symétrie orthogonale

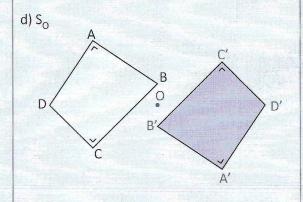
Appliquer

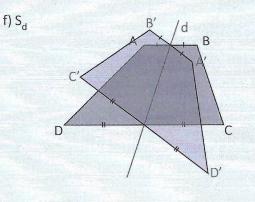
Dans chaque cas, construis l'image de la figure par la transformation proposée.

a) S_0 $A \qquad E' \qquad F'$ $C \qquad D = B' \qquad A'$ $E \qquad E$

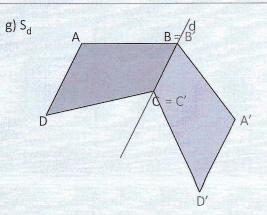


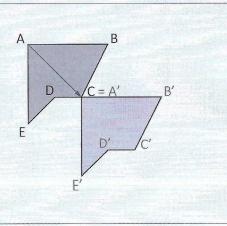
c) S_d C' B = B'





h) t_{AC}

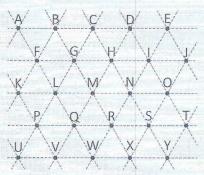




TU

 $S_{KO}(H) = R$

2 En observant le dessin, complète les égalités.



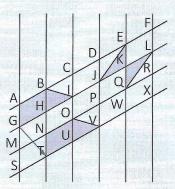
$t_{\overline{FG}}(D) = E$	$S_{H}(F) = J$
$t_{\overline{WN}}(K) = B$	$S_{M}(W) = C$
$t_{\overline{KM}}(V) = X$	$S_L(U) = C$

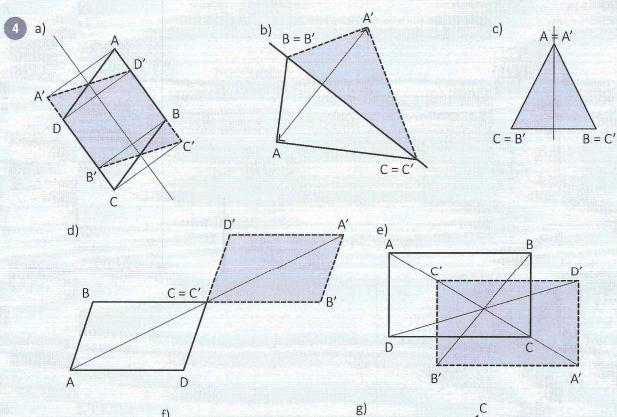
$$S_M(W) = C$$
 $S_{DV}(S) = F$
 $S_L(U) = C$ $S_{CU}(A) = N$

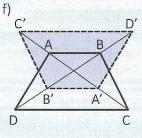
$$t_{\overrightarrow{AQ}}(H) = Y$$
 $S_H(B) = O$ $S_{FS}(V) = D$ $t_{\overrightarrow{MD}}(N) = G$ $S_M(E) = U$ $S_{ON}(X) = G$

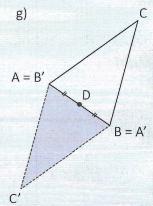
$$t_{\overrightarrow{WP}}(N) = G$$
 $S_M(E) = U$ $S_{QN}(X) = G$ $t_{\overrightarrow{CJ}}(P) = X$ $S_R(Y) = L$ $S_{VO}(X) = M$

- **ÉCRIS** le nom et l'(les) élément(s) caractéristique(s) d'une transformation du plan qui applique :
 - le triangle LQK sur le triangle JEK : la symétrie centrale de centre K
 - le trapèze ABIG sur le trapèze NOVT la translation de vecteur GT

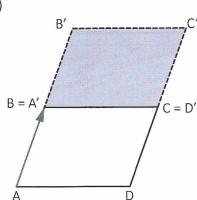




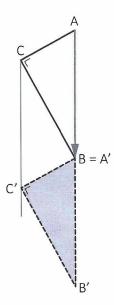




h)



i)



Transférer

Aire =
$$\frac{|AC| \cdot |BD|}{2}$$

$$|AC| = 20.2 = 40 \text{ cm}$$

$$|AC| = 20 \cdot 2 = 40 \text{ cm}$$

 $|BD| = 40 : 2 = 20 \text{ cm}$

Aire =
$$\frac{20.40}{2}$$
 = 400 cm²

0

BFEC est un parallélogramme car ses diagonales se coupent en leur milieu.

