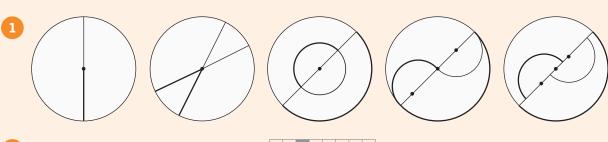


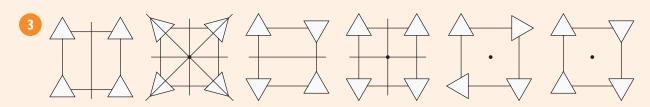
Le pictogramme « carreau » possède un centre de symétrie, contrairement au pictogramme « cœur ».

3	La droite	d_1	d ₂	d_3	d_4	d ₅	d ₆	d ₇	d ₈	d_9	d ₁₀	d ₁₁	lU₁¬	d ₁₃	d ₁₄	d ₁₅	d ₁₆	d ₁₇	d ₁₈	d ₁₉	d ₂₀
	est un axe de symétrie.	٧	F	V	F	V	V	F	F	F	V	F	F	V	V	V	V	F	F	\	F

- 4 a) F b) V c) V d) V e) F f) F g) V h) V i) V j) F
- 5 Le losange
- Un quadrilatère qui a un centre de symétrie mais pas d'axe de symétrie est un **parallélogramme**. Un quadrilatère dont les diagonales sont les seuls axes de symétrie est un **losange**.

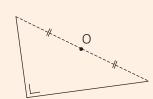
Appliquer

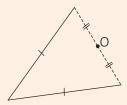


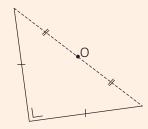


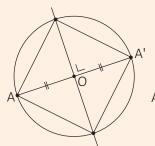
a) ... un rectangle

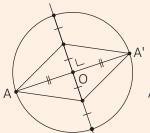
c) ... un carré

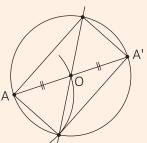


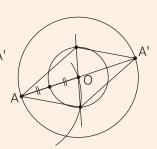




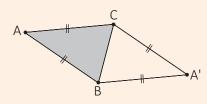


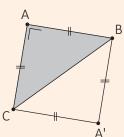




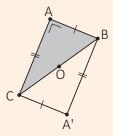


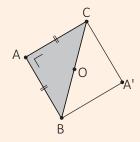
- a) Puisque le quadrilatère ABA'C est un losange, il a ses côtés de même longueur. On peut donc en déduire que le triangle initial ABC a au moins les côtés [AC] et [AB] de même longueur. Il est donc au moins isocèle en A.
- b) Puisque le quadrilatère ABA'C est un carré, il a ses côtés de même longueur et ses angles sont droits. On peut donc en déduire que le triangle initial ABC a les côtés [AC] et [AB] de même longueur et qu'il possède un angle droit en A. Il est donc isocèle rectangle en A.





- 7 a) Puisque le quadrilatère ABA'C est un rectangle, il a ses angles droits. On peut donc en déduire que le triangle initial ABC a un angle droit. Il est donc rectangle en A.
- b) Puisque le quadrilatère ABA'C est un carré, il a ses côtés de même longueur et ses angles sont droits. On peut donc en déduire que le triangle initial ABC a les côtés [AC] et [AB] de même longueur et qu'il possède un angle droit en A. Il est donc isocèle rectangle en A.



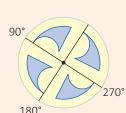


180°

b)

d)

270°



Transférer

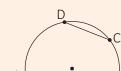
120°

1 a)

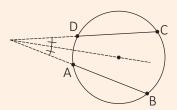
108

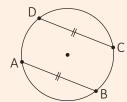
144°

180°

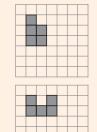


c) AB // DC



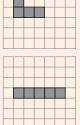


a) aucun axe



b) 1 seul axe

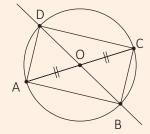
c) 2 axes



d) 4 axes et 1 centre

e) 1 centre et pas d'axe

a) Nommer O, le milieu de la diagonale [AC]. Tracer un cercle de rayon | OA |. Nommer B et D les extrémités d'un autre diamètre de ce cercle. Tracer le rectangle ABCD.



b) Nommer O, le milieu de la diagonale [AC]. Tracer un cercle de centre O et de 1 cm de rayon. Nommer B et D les extrémités d'un diamètre de ce nouveau cercle. Tracer le parallélogramme ABCD.

